PE1646/H Scottish Water submission of 24 November 2017

Thank you for the opportunity for Scottish Water to provide further information to the Public Petitions Committee in consideration of Petition PE 1646 (Drinking water supplies in Scotland). We are happy to provide more information about the measures taken to monitor the quality and safety of the water in Badenoch and Strathspey subsequent to the move from chlorination to chloramination.

Both chlorination and chloramination are methods of disinfecting drinking water as part of a more comprehensive treatment process that is in place at Aviemore water treatment works. The use of disinfection also ensures that drinking water remains free of harmful bacteria as it travels through the network to customer homes.

Regulatory and Enhanced Sampling and Analysis

Scottish Water, like other UK water companies, operates in a highly regulated industry where public health is the prime concern and we take this responsibility very seriously. We undertake rigorous monitoring to confirm that the water supplied complies with health based standards as set out in the Public Water Supplies (Scotland) Regulations 2014. The Drinking Water Quality Regulator (DWQR) is responsible for ensuring that Scottish Water complies with these legal water quality duties. Although SEPA do not monitor drinking water in the supply networks, they are responsible for monitoring some source water quality in Drinking Water Protected Areas and any outputs from water treatment works which discharge direct to the environment.

During the introduction of the chloramination disinfection process at Aviemore water treatment works, we carried out normal regulatory sampling and analysis and, in addition, established an enhanced sampling and analysis programme to ensure the water supplied since the introduction of chloramination in April 2017 has been of the right quality and safety.

The Aviemore water treatment works has been continuously monitored on-site and over 13,400 analytical tests have been completed from over 4,500 samples collected from the water supply in the Badenoch and Strathspey area from April to October 2017.

Our analysis of water quality and safety included:

- **On-line telemetry analysis:** monitoring and evaluating automatic sensors and bench tests via a telemetry system in place at the treatment works, with results monitored in real time, to ensure the chloramination process is operating correctly. This includes continual monitoring of phosphate, turbidity, pH, flow, total ammonia and chlorine (free and total). Automatic alarms are raised if any of the parameters being monitored approach set target levels, requiring an on-site operator to attend. In addition, this system has automated safety measures in place which stop water entering the clear water tanks and into supply if certain levels are breached.
- **Regulatory programme of sampling and analysis:** the requirements for this are set out in the Public Water Supplies (Scotland) Regulations 2014, including the processes and procedures that must be met, the collecting and analysing samples and the performance, frequency and characteristics necessary for sampling or testing drinking water.

Enhanced sampling and analysis: this was specific to Badenoch and Strathspey and focused on the water quality and safety in supply at customer homes as well as the source water, the treated water at the Aviemore works and the water in supply at service reservoirs. This additional sampling and analysis has been completed according to the same standards as the regulatory programme and was put in place to ensure that additional analysis was completed for our customers, examining taste and odour and the chloramination disinfection process, including the levels of monochloramine and disinfection by-products (specifically N-Nitrosodimethylamine (NDMA)) to ensure the safety of the water in relation to the chloramination disinfection process. Further regulatory disinfection by-products analysis was also completed for Trihalomethanes (THMs).

Table 1 in Appendix 1 details the types of samples collected and number of tests completed for the Badenoch and Strathspey water supply over the period 1st April to 31st October 2017, covering the switch to chloramination on 4th April. Further information on Scottish Water's scientific services practices and accreditation are available in our previous submission to the petitions committee.

Summary of Results of Scottish Water monitoring

Overall, the quality of water supplied to customers in the Badenoch and Strathspey area continues to consistently comply with health based regulatory standards. This is the case both in relation to the current change from chlorination to chloramination disinfection in April 2017 and in the earlier change from the Loch Einich source water supply to the Aviemore boreholes. This was outlined in the DWQR response to the Petitions Committee in June this year and summarised in Appendix 1, Table 2.

Over the period detailed in this response, no regulatory water quality and safety parameters relating to the chloramination process, or treatment processes in general, failed in relation to regulatory health based standards or World Health Organisations (WHO) guideline values. There was one failure for iron levels during this time. However, this was related to network flushing activity and did not pose a risk to health. Appendix 2 outlines our regulatory programme compliance.

In terms of our on-line telemetry analysis, there was no activation of any automated safety measures and no areas of concern highlighted within the telemetry data which continually monitors the the chloramination disinfection process. Appendix 3 shows data collected from on-line sensors at the treatment works for parameters related to the chloramination process.

The test results for both the regulatory and enhanced monitoring programmes which are particularly relevant in relation to safety and quality have been summarised in the graphs contained in Appendix 4. Analysis of the disinfectant by-product associated with chloramination (NDMA) was carried out by an independent laboratory with over 70 samples analysed. The highest concentration of NDMA recorded in these samples was 0.8 ng/L and the vast majority of samples were below the limit of detection (0.5 ng/L). No samples approached World Health Organisation (WHO) guideline values (100 ng/L).

Overall disinfection by-product levels, as measured as total trihalomethanes (THMs) were all below 3.2 μ g/L. The PCV limit is 100 μ g/L. Similarly all monochloramine concentrations were recorded at or below 0.7 mg/L which is significantly lower than the WHO guideline of 3 mg/L.

A full regulatory programme data set has been reported to our regulator, the DWQR.

Going forward and given the results of our current monitoring, Scottish Water intends to phase out the enhanced monitoring programme and return to normal regulatory sampling and analysis.

We hope that the information provided has enabled you to make a full assessment of the water quality and safety at Aviemore water treatment works, particularly during the period when we changed disinfection processes from chlorination to chloramination. We also hope that this information has provided reassurance that we are supplying customers in Badenoch and Strathspey with high quality drinking water and that we take our responsibilities and obligations in relation to drinking water quality very seriously.

We would certainly be happy to answer any further questions or provide any further information which the committee would find helpful.

Appendix 1

Number and type of tests - regulatory and enhanced monitoring

The number of tests completed for the regulatory and enhanced monitoring programmes over the period 1st April to 31st October 2017 covering the switch to chloramination on 4th April 2017 are summarised in Table 1 below. In total, 4,591 samples have been collected with 13,485 analytical tests completed.

Table 1Type of sample collected and number of tests completed at Aviemore over
the period 1st April – 31st October 2017 covering the switch to chloramination
on 4th April 2017 for the regulatory and enhanced monitoring programmes

Sample Type	Regulatory Programme	Enhanced Monitoring Programme
	Test numbers	Test numbers
Source water from the		9
individual boreholes		
Combined source water from		355
all boreholes		
Treated water leaving the	777	959
works		
Treated water in supply at	1440	1462
the service reservoirs		
Treated water in supply at	421	8062
customer homes		

The overall analysis which is completed on these samples incorporates the parameters routinely tested to demonstrate compliance with the Public Water Supplies (Scotland) Regulations 2014 and the additional test completed for the enhanced monitoring programme. The full scope of analytical tests and sampling activity can be found within the Accreditation Schedule held on the UKAS website: www.ukasscheduleofaccreditation.co.uk.

Test protocols are generally based on methods documented by The Standing Committee of Analysts (SCA) who exists to provide authoritative guidance on methods of sampling and analysis. In some cases methods can also be based on other equivalent international standards. The SCA methods are published by the Environment Agency.

Summary of Badenoch and Strathspey water quality data - 2007 to 2016

Overall, the quality of water supplied to customers in the Badenoch and Strathspey area continues to consistently comply with health based regulatory standards. This is the case both in relation to the current change from chlorination to chloramination disinfection in April 2017 and in the earlier change from the Loch Einich source water supply to the Aviemore boreholes in February 2012. This was outlined in the DWQR response to the Petitions Committee in June this year which is summarised in Table 2 below and available at: http://www.parliament.scot/S5_PublicPetitionsCommittee/Submissions%202017/PE1646D_Drinking_Water_Quality_Regulator_for_Scotland.pdf

Table 2Summary of the Badenoch and Strathspey water supply compliance at
customer taps from 2007 to 2016 as reported by the DWQR in their June
2017 response to the Petitions Committee

Water Quality Data

This is a summary of the water quality data from Regulatory samples for the treatment works and samples taken from consumers' taps.

Blackpark WTW			Aviemore WTW			
Year	No. of samples	No. of failures		Year	No. of samples	No. of failures
2007	497	9	1	2012	510	0
2008	509	12	1	2013	697	0
2009	492	14		2014	970	0
2010	479	23	1	2015	552	0
2011	460	6		2016	987	0

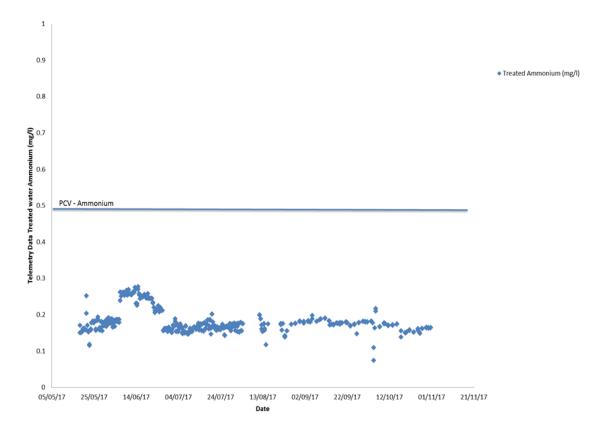
Aviemore Regulatory Water supply zone - samples taken from consumers' taps

Year	No. of samples	No. of failures
2008	715	1
2009	712	1
2010	713	0
2011	711	0
2012	729	0
2013	608	0
2014	747	0
2015	731	0
2016	736	0

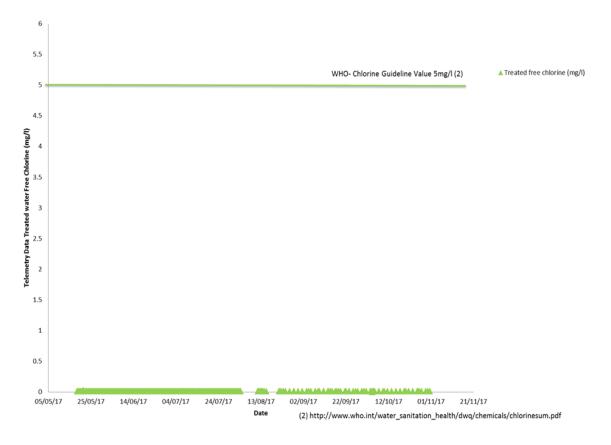
Appendix 2

The regulatory compliance achieved to date in 2017 for the Badenoch and Strathspey supply is summarised in Table 3 below. Only one parameter breached the PCV limits. This was iron and was a result of network flushing activities and did not pose a risk to health.

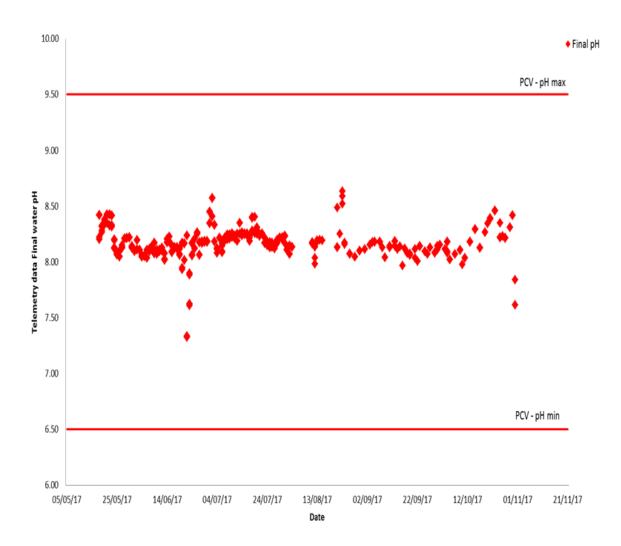
No regulatory water quality and safety parameters relating to the chloramination process or treatment process in general failed for samples collected as part of the regulatory or enhanced monitoring programmes.

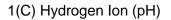

Table 3Regulatory programme compliance with health based regulatory standards for
samples taken between 1st April and 31st October 2017 inclusive in Badenoch
and Strathspey customer properties

Determinand	No. of Results	PCV	Units of Measure	Results Failing PCV (%)	Min	Mean	Max
1,2 Dichloroethane	3	3	µg/l	0	< 0.1	<0.1	<0.1
Aluminium	14	200	µgAl/l	0	< 9	10.5	19
Ammonium	14	0.5	mgNH4/l	0	0.05	0.16	0.22
Antimony	4	5	µgSb/l	0	< 0.02	<0.02	<0.02
Arsenic	4	10	µgAs/l	0	< 0.2	<0.2	<0.2
Atrazine	6	0.1	µg/l	0	0.01	0.012	0.013
Benzene	3	1	µg/l	0	< 0.03	<0.03	<0.03
Benzo (a) pyrene	4	0.01	μg/l	0	< 0	<0	<0
Boron	5	1	mgB/l	0	< 0.02	<0.02	<0.02
Bromate	5	10	µgBrO3/l	0	< 0.3	<1.1	<1.3
Cadmium	4	5	µgCd/l	0	0.02	0.028	0.05
Chloride	5	250	mgCl/l	0	17	17.2	18
Chromium	4	50	μgCr/l	0	0.3	0.4	0.5
Clostridium perfringens (incl. spores)	14	0	CFU in 100ml	0	0	0	0
Coliform bacteria	21	0	CFU in 100ml	0	0	0	0
Colony count at 22°C	14		cfu/ml	0	0	31.857	260
Colony count at 37°C	14		cfu/ml	0	0	13.571	179
Colour	14	20	mg/l Pt/Co	0	< 2	2.5	9
Conductivity	14	2500	μS/cm at 20°C	0	146	150.429	156
Copper	4	2	mgCu/l	0	0.001	0.025	0.06
Cyanide	6	50	µg/l	0	< 0.8	0.95	1.4
E. coli	21	0	CFU in 100ml	0	0	0	0
Enterococci	5	0	CFU in 100ml	0	0	0	0
Fluoride	5	1.5	mgF/l	0	0.168	0.192	0.222
Free chlorine	21		mg/l	0	0.03	0.048	0.09
Gross alpha	4		Bq/I	0	< 0.04	< 0.04	<0.04
Gross beta	4		Bq/I	0	0.02	0.032	0.04
Heptachlor	1	0.03	μg/l	0	< 0.003	< 0.003	< 0.003
Heptachlor epoxide	1	0.03	μg/l	0	< 0.005	<0.005	<0.005
Hydrogen ion	14	min 6.50 max 9.50		0	7.9	8.136	8.4
Iron	14	200	μgFe/l	7.143	<7	30.429	316
Lead	4	10	µgPb/l	0	< 0.2	0.2	0.2
Lindane (g- HCH)	1	0.1	μg/l	0	< 0.003	< 0.003	< 0.003
Manganese	14	50	µgMn/l	0	1	2.643	7
Mercury	5	1	μgHg/l	0	< 0.02	< 0.02	< 0.02
Nickel	4	20	µgNi/l	0	< 0.2	<0.2	<0.2
Nitrate	5	50	mgNO3/I	0	2.79	3.262	3.88
Nitrite	5	0.5	mgNO2/I	0	< 0.01	0.011	0.015
PAH - total	4	0.1	μg/l	0	< 0.005	< 0.005	< 0.006
Pesticides: Total	6	0.5	μg/l	0	0.01	0.012	0.013
Propetamphos	5	0.1	μg/l	0	< 0.002	< 0.002	< 0.002
Quantitative odour	14	0	Dilution number	0	0	0	0
Quantitative taste	14	0	Dilution number	0	0	0	0
Selenium	4	10	µgSe/l	0	< 0.3	<0.3	<0.3
Simazine	6	0.1	μg/l	0	< 0.002	<0.002	<0.002
Sodium	5	200	mgNa/l	0	11.7	12.3	13
Sulphate	5	250	mgSO4/I	0	6.6	6.74	6.9
THM: Total	3	100	μg/l	0	< 3.2	<3.2	<3.2
TON ratio	5	100	1 No/ '	0	0.06	0.068	0.08
Tetra & Trichloroethene	3	10	μg/I	0	< 0.4	<0.4	<0.4
Tetrachloromethane	3	3	μg/l	0	< 0.4	0.4	0.4
Total chlorine	21	5	mg/l	0	0.31	0.566	0.1
Total organic carbon	5		mgC/I	0	< 0.2	0.566	0.65
Turbidity	5 14	4	NTU	0	< 0.2	0.28	2


Appendix 3

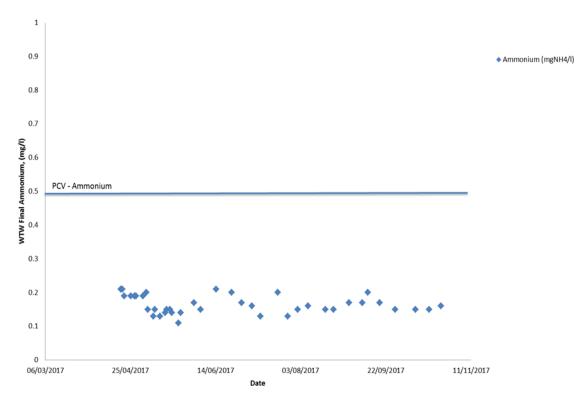
Telemetry data

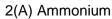

At the treatment works, the telemetry data are used to ensure that the treatment processes are working correctly. Automatic alarms are raised if any of the monitored parameters are approaching fixed operational target levels and an on-site operator is required to attend to the works to adjust the treatment process back into specification within 1 hour. If the actions levels are breached, automatic alarms are raised and the works is immediately shut down, with the water stopped entering the clean water tank and thus into supply. Rectification of these works issues is required to start immediately. An example of the works operation in 2017 is outlined in the 3 graphs below and the relevant regulatory Prescribed Concentration and Value (PCV) limits or WHO guideline values are also provided where applicable.

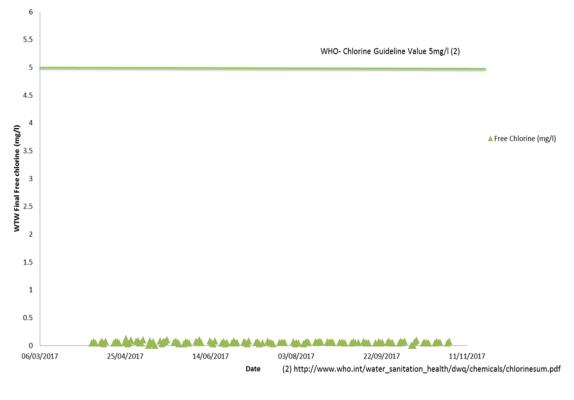


1(A) Ammonium

1(B) Free chlorine

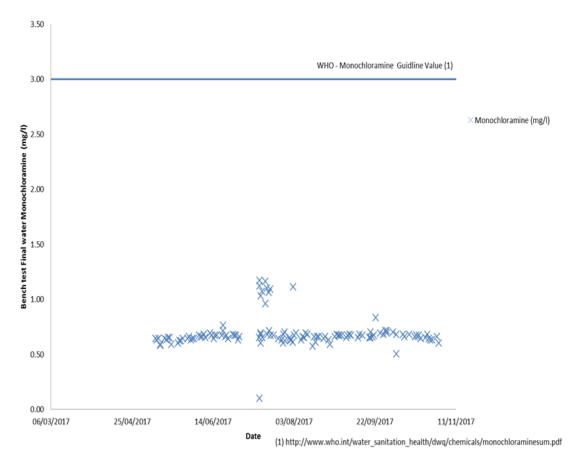


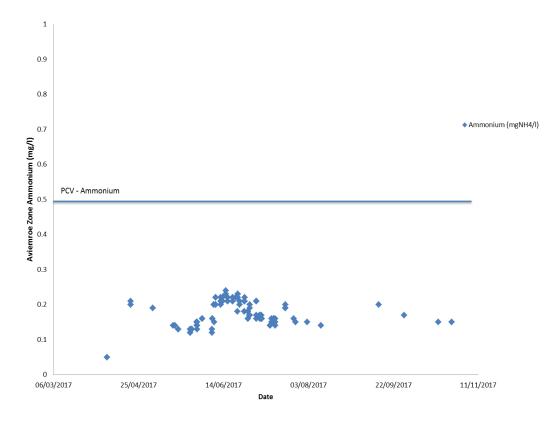

Figures 1(A) – 1(C) Concentrations of ammonium (A), free chlorine (B) and hydrogen ion (pH) (C) in the treated water at the Aviemore water treatment works up till 31st October 2017


Appendix 4

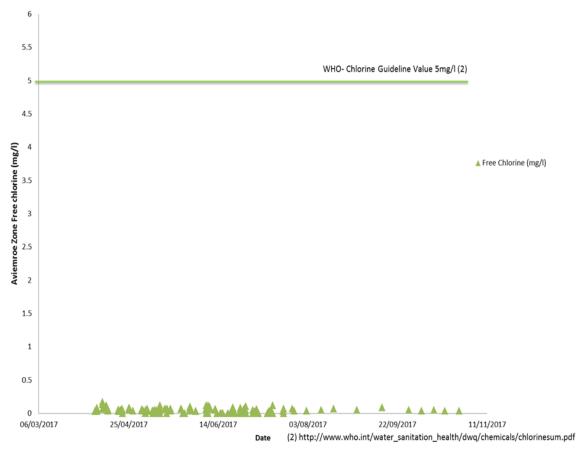
Regulatory and enhanced monitoring programmes

The test results for both the regulatory and enhanced monitoring programmes which are particularly relevant in relation to safety and quality have been summarised in the graphs below (Figures 2 and 3) for samples collected at the treatment works and in supply in customers homes. The relevant regulatory PCV limits are also provided where applicable. Please not there is no PCV for monochloramine nor for NDMA, however there are guideline values from the World Health Organisation and these have been highlighted where appropriate on the below graphs.

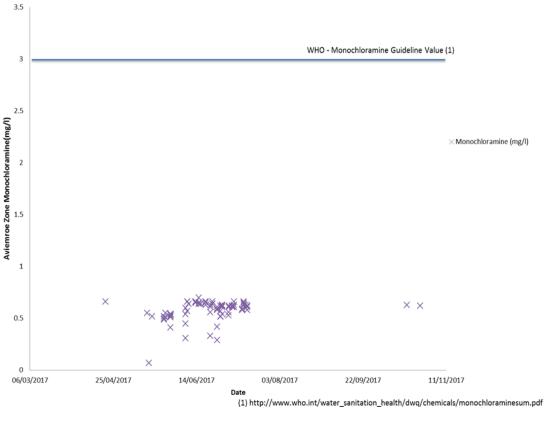


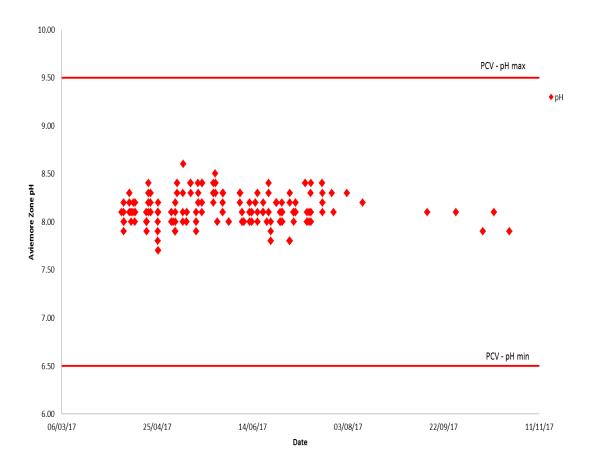

2(B) Free chlorine

2(C) Monochloramines



Figures 2(A)-2(C)


Concentrations of ammonium (A), free chlorine (B) and monochloramine (C) in the final treated water *at the Aviemore water treatment works* from 1st April – 31st October 2017 *measured as part of the regulatory and enhanced monitoring programmes.*


3(A) Ammonium

3(B) Free chlorine

3(C) Monochloramine

3(D) Hydrogen Ion (pH)

Figures 3(A)-3(D)Concentrations of ammonium (A), free chlorine (B),
monochloramine (C) and hydrogen ion (pH)(D) in the final
treated water at customer homes from 1st April – 31st October
2017, measured as part of the regulatory and enhanced
monitoring programmes

The data presented in Figures 2 and 3 are form the accredited sampling and analysis completed by Scientific Services. A full regulatory programme data set has been reported to the DWQR.

The disinfectant by-product associated with chloramination includes NDMA. The NDMA analysis was completed by an independent laboratory (ALS Environmental) and the limit of detection for their method was 0.5 ng/L - 20 ng/L. Over 70 samples from April 2017 were analysed from water collected at customer properties. The highest concentration was 0.8 ng/L which was recorded in one sample. There was one further sample at 0.6 ng/L and two samples at 0.5 ng/L. The vast majority of samples were below the limit of detection. Therefore, no samples approached the WHO guideline concentrations of 100 ng/L.

Similarly all monochloramine concentrations (Figures 2 and 3) were recorded at or below 0.7 mg/L which is significantly lower than the WHO guideline of 3 mg/L.

Overall disinfection by-products as measured as total trihalomethanes (THMs) were all below 3.2 μ g/L. The PCV limit is 100 μ g/L.

Water Quality and Safety Parameters

Parameter	Test Protocol	Method Basis
Coliforms	oliforms MD08 : Determination &	
	Enumeration of Coliform	The Microbiology of Drinking Water (2016) – Part 4 –
	Bacteria & E.Coli in Potable,	Methods for the isolation and
	Raw and Swimming Pool	enumeration of coliform
	Waters using a single	bacteria and Escherichia coli
	membrane filtration technique	(including <i>E. coli</i> O157:H7)
E.coli	See above	See above
Total Viable Counts	The Determination of Colony	The Microbiology of Drinking
	Count in Potable, Raw and	Water (2012) - Part 7 –
	Swimming Pool Waters by	Methods for the enumeration
	Pour Plate Method	of heterotrophic bacteria
Faecel Streptococci	MD04 The Determination of	The Microbiology of Drinking
	Enterococci in Potable and	Water (2012) - Part 5 –
	Raw Waters by Membrane	Methods for the Isolation and
	Filtration	enumeration of enterococci
Clostridia	MD05 Clostridium Perfringens	The Microbiology of Drinking
	In Potable and Raw Waters by	Water (2015) – Part 6 –
	Membrane Filtration	Methods for the isolation and
		enumeration of sulphite-
		reducing clostridia and
		Clostridium perfringens by
		membrane filtration
Qualitative Odour	D58 Determination of	The determination of taste
	Qualitative and Quantitative	and odour in drinking waters
	Taste and Odour in Raw and	(2014)
Qualitative Taste	Potable Waters See above	See above
Quantitative Odour	See above	See above
Quantitative Taste	See above	See above
Cryptosporidium	MP18 Isolation and	The Microbiology of Drinking
oryptospondium	Identification of	Water (2010) - Part 14 -
	Cryptosporidium Oocysts in	Methods for the isolation,
	Raw and Potable Waters	identification and
	using Compressed Foam	enumeration of
	Filters	Cryptosporidium oocysts and
		<i>Giardia</i> cysts
Free Chlorine	The Measurement of Free and	Hach Pocket Colorimeter
	Total Chlorine Residual in	Chlorine Manual 1997.
	Potable Water Using HACH	Hach Pocket Colorimeter II
	Colorimeter (Method Code	Chlorine Instruction Manual
	S01)	2004
Total Chlorine	See above	See above
Alkalinity	IC078 - Alkalinity in Sewage	Environment Agency, The
	Effluents, Industrial	Determination of Alkalinity
	Effluents, Leachates,	and Acidity on Water 1981;
	Sewage Sludge	Methods for the
	Supernatants, Raw and	Examination of Waters and
	•	Accordented Materiales
	Potable Waters and pH in	Associated Materials;
	Potable Waters and pH in Crude, Final and Trade Effluents and Leachates	Associated Materials,

Outline of parameters and test protocol reference for drinking water determinants

Appearance	**ICO26 Determination of Appearance in Raw and Potable Waters	In house screening procedure
Aluminium, Iron, Manganese, Antimony, Arsenic, Cadmium, Copper, Chromium, Lead, Nickel & Selenium	ICPOES1 - Fe, Mn and Al in Potable and Raw Waters using a Perkin Elmer Optima 8300 ICP Spectrometer. GIC001 – Analysis of defined elements by Perkin Elmer Nexion 300X ICPMS Spectrometer* (also covers Al, Fe, Mn)	Standard Methods for the Examination of Water and Wastewater, 1989, 17th edition, published by APHA, AWWA, WPCF. USEPA Method 200.8
pH, Colour, Conductivity and Turbidity	GIC003 Conductivity, pH, Turbidity and Colour in Raw Water and Potable Waters by Peerless Autoanalyser System IN33 Turbidity in Potable and Raw waters. IN37 pH in Raw and Potable waters by pH meter. IN38 Conductivity in raw and potable waters by conductivity meter @20°C IC002 Measurement of Colour in Raw and Potable waters by Uv-Vis Spectrometry	The Measurement of Electrical Conductivity and the Laboratory determination of the pH value of Natural, Treated and Waste Waters, 1978, Methods for the Examination of Waters and Associated Materials. HMSO ISBN 0 11 751 428 4. The Determination of pH in Low Ionic Strength Waters, 1988, Methods for the Examination of Waters and Associated Materials. HMSO ISBN 0 11 752 084 5. Department of the Environment, Methods for the Examination of Water and Associated Materials, Colour and Turbidity of Waters, 1981, Methods for the Examination of Waters and Associated Materials. HMSO ISBN 0 11 751 955 3.
Cyanide	IC008 Cyanide in Defined Matrices by Continuous Flow Analyser	Cyanide in Waters etc 1988. Methods for the Examination of Waters and Associated Materials. HMSO ISBN 0 11 752219 8. SKALAR method for Total Cyanide, Catnr. I295-0047w/r Issue 102808/MH/99253508
TOC	D45.1 The Determination of Total Organic Carbon (TOC) in defined matrices	Skalar Formacs HT combustion TOC/TN Analyser, user manual. The instrumental determination of Total Organic Carbon, Total Oxygen and Related Determinands 1979 HMSO ISBN 0-11-751458-6
Ammonium, Chloride, Nitrate, Nitrite,	IC009 - The Determination Of Chloride, Nitrite, Nitrate, Ton, Ammonium and Phosphate (SR) In Defined Matrices By Discrete Auto Analyser	Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Pb. American Public Health Association. HMSO ISBN 0- 87553-207-1.

		Department of the Environment, Method for the Examination of Water and Associated Material, Chloride in Waters, Sewage and Effluents, 1981. Department of the Environment, Method for the Examination of Water and Associated Material, Oxidised Nitrogen in Waters 1981. Department of the Environment Standing Committee of Analysts method "Method for the Spectrophotometric Determination of Ammonia in Water" published in the method book, "Ammonia in Water 1981
Boron, Sodium, Sulphate	ICPOES2 - Ca, Na, Mg, K, Ba, B, P, Li, Sulphate and Total Hardness (by Calculation) in Potable, Raw and Phosphate Dosed Waters using a Perkin Elmer Optima	Standard Methods for the Examination of Water and Wastewater, 1989, 17th edition, published by APHA, AWWA, WPCF. Sulphate in Waters, Effluents and Solids (2nd Edition). 1988. HMSO, Methods for the Boron in Waters, Effluents, Sewage and some Solids, 1980. HMSO, (Methods for the Examination of Waters and Associated Materials)
Mercury	ICPMS1 - Mercury In Potable And Raw Waters Using A Perkin Elmer ICPMS Spectrometer	Determination of mercury in potable water by ICP-MS using gold as a stabilising agent. James Allibone, Ebby Fatemian and Peter Walker (Thames Water). Journal of Analytical Atomic Spectrometry, 1998.
GC MS Scan*	**OC066 Semi Quantitative Screening for Semi-Volatile Organic Compounds using Gas Chromatography Mass Spectrometry	Standard Methods, For The Examination Of Waste And Wastewater, 18th Edition, American Public Health Association, Pages 6-76 - 6- 89.
Phenols*	O021 The Determination of Phenolic Compounds by GC/MS	Environment Agency The Determination of Microgram and Submicrogram Amounts of Individual Phenols in River and Potable Waters 1988; Methods for the Examination of Waters and Associated Materials.
Low level Phenols*, **	O021 The Determination of Phenolic Compounds by GC/MS	Environment Agency The Determination of Microgram and Submicrogram Amounts of Individual Phenols in River
Benzene, 1,2- dichloroethane, Tetrachloroethene and Trichloroethene,	O013 The Determination of THM's & Volatiles in Potable and Untreated Waters by	and Potable Waters 1988; Methods for the Examination of Waters and Associated Materials.

Tetrachloromethane, THM: Total	Headspace Injection Gas Chromatography by GC/MS	In house developed method with ISO17025 accreditation.
Benzo(a)pyrene, PAH Total	OC 012 Determination of Polycyclic Aromatic Hydrocarbons in Raw and Potable Waters By Solvent Extraction and High Performance Liquid Chromatography with Programmable Fluorescence Detection	Environment Agency, The Determination of 6 Specific Polynuclear Aromatic Hydrocarbons in Waters (with notes on the determination of other PAH) 1985: Methods for the Examination of Waters and Associated Materials. Environment Agency, The Determination of 6 Specific Aromatic Hydrocarbons in Water (additional methods) 1997: Methods for the Examination of Waters and Associated Materials.
Fluoride, Bromate	O019 - Determination of Anions in Raw and Potable waters by Ion chromatography.	Determination of Disinfection By-Product Anions and Bromide in Drinking Water Using a Reagent-Free [™] Ion Chromatography System Followed by Postcolumn Addition of an Acidified On- Line Generated Reagent for Trace Bromate Analysis, Dionex Application Note 171.
Aldrin, Dieldrin, Heptachlor, Heptachlor epoxide, Lindane	O020 The Determination of Pesticides and Herbicides in Raw and Potable Waters by GC/MS	Environment Agency, Organochlorine Insecticides and Polychlorinated Biphenyls in Waters 1978. Environment Agency, Organo-Phosphorous Pesticides in River and Drinking Water 1980 Tentative Method.
MCPP, MCPA, MCPB, 2,4- D, 2,4-DB, Dicamba	O024 The Determination of Acidic Herbicides by Triple Quad LC/MS/MS	In house developed method with ISO17025 accreditation.
Simazine, Atrazine, Linuron, Diuron, Propetamphos, Diazinon, Metazachlor, Metaldehyde, Isoproturon, Chlortoluron	O043 Determination of Mixed Pesticides, Herbicides and Fungicides by Direct Injection Triple Quad LC/MS/MS Analysis	In house developed method with ISO17025 accreditation.
Metsulfuron-methyl, Thifensulfuron-methyl, Tribenuron-methyl**	O018 Sulfonyl Urea Herbicides by Direct Injection LC/MS/MS	In house developed method with ISO17025 accreditation.
Cypermethrin, Flumethrin**, Permethrin	O009 The Determination of Pyrethroids and Flumethrin in Raw and Potable Waters by GCMS and GC-ECD	Environment Agency, Methods for the Determination of Synthetic Pyrethroid Insecticides in Waters by Gas Liquid

		Chromatography 1992, Methods for the Examination of Waters and Associated Materials Environment Agency, Pyrethrins and Permethrin in Potable Waters by Electron- Capture Gas Chromatography 1981, Methods for the Examination of Waters and Associated Materials.
Asulam	O022 Asulam by Direct Injection LC/MS/MS	In house developed method with ISO17025 accreditation.
Indicative dose –Gross alpha, Gross beta	RAD-1 Measurement of Alpha/Beta Activity in Potable and Raw Waters	Environment Agency, Measurement of Alpha and Beta Activity of Water and sludge samples. The determination of Radon - 222 and Radium - 226. The Determination of Uranium (including General X- Ray Flourescent Spectometric Analysis) 1985 - 1986.
Radon	RAD-3 Measurement of Radon in potable and raw waters	Water quality - Radon-222 - Part 4: Test method using two-phase liquid scintillation counting - 2013
*** NDMA (N- Nitrosodimethylamine)	ALS Method Statement (outlined in Appendix 2)	Solid phase extraction followed by GCMSMS analysis
**** Monochloramine	The Measurement of monochloramine in Potable Water Using HACH Colorimeter (Method Code 10270)	Indophenol Method using Hach Pocket Colorimeter Chlorine Manual SL1000

*Additional screening tests analysed on request

** Outwith scope of accreditation

Total Pesticides: the sum of the concentrations of each pesticide analysed. The pesticides analysed are based on risk assessment.

*** NDMA analysis was completed by an independent laboratory (ALS Environmental). The method is not accredited

**** the monochloramine method is not accredited. It was completed by Scientific Services accredited DWTS samplers